
1 
 

National Institutes of Health Consensus Development Project on 1 

Criteria for Clinical Trials in Chronic Graft-versus-Host Disease:  2 

IV. The 2020 Highly morbid forms report 3 

 4 

 5 
 2 Division 1, Institution 1, State 1, Country 1 6 

  7 

* Correspondence: Daniel Wolff, MD 8 

Dept. of Internal Medicine III, University of Regensburg 9 

F.J. Strauss Allee 11, 93053 Regensburg, Germany 10 

phone: -49-941-944-15531, fax: -49-941-944-5543 11 

e-mail: daniel.wolff@ukr.de 12 

 13 

Short Title:  Highly morbid forms of cGVHD 14 

Keywords:  Chronic graft-versus-host disease, allogeneic hematopoietic cell transplantation, consensus, 15 

lung, sclerosis, gastrointestinal tract, ocular 16 

Word counts:  abstract, xx; text, xx  17 

Tables:  x 18 

Figures:  x  19 

References:  x 20 

Appendices:  x 21 

On-line Supplements:  x 22 

mailto:daniel.wolff@ukr.de


2 
 

 INTRODUCTION 23 

Some forms of chronic graft-versus-host disease (cGVHD) are associated with significant morbidity in 24 

part due to their non-reversibility due to fibrosis and significant long term impact on quality of life (eye), 25 

physical functioning (sclerotic skin manifestations) and survival (lung, gastrointestinal)1, 2. Progress in 26 

prevention of long term severe morbidity associated with cGVHD is limited by lack of biomarkers to 27 

predict a highly morbid course and absence of effective organ-specific approaches targeting 28 

“irreversible” sequelae. Moreover, treatment advances are limited by absence of effective and nontoxic 29 

therapy for highly morbid manifestations, and difficulty in conducting clinical trials due to disease 30 

heterogeneity and small patient numbers. 31 

 32 

PURPOSE OF THIS DOCUMENT 33 

 The goal of this working group is to outline research goals for frequent highly morbid forms of 34 

cGVHD, namely advanced skin sclerosis/fasciitis, lung, ocular and gastrointestinal (GI) involvement. We 35 

propose a roadmap to address gaps in addressing these manifestations including suggestions on trial 36 

design.  37 

 38 

SUMMARY OF RECOMMENDATIONS 39 

1. Research should focus on phenotyping cGVHD clinically and biologically within cohort studies, in 40 

order to describe incidence, predictive factors, mechanisms of organ damage, and natural history of 41 

highly morbid conditions. Multicenter studies with common definitions and research sample 42 

collections are needed (Figure). 43 

2. Develop new approaches for early identification and treatment of highly morbid forms of cGVHD, 44 

especially biologically targeted treatments, with a special focus on prevention and treatment of 45 

fibrotic changes. 46 

3. Establish primary endpoints for clinical trials of each highly morbid manifestation in relationship to 47 

the time point of intervention (early versus late). Other endpoints, such as lack of progression and 48 

improvement in functioning or quality of life, may be realistic endpoints for clinical trials of highly 49 

morbid manifestations. Explore novel trial designs for small populations. 50 

 51 

METHODS  52 

 Each working group was created to encourage global engagement in the topic. Groups worked 53 

individually to review the relevant literature and create the initial draft of the paper, which was 54 

reviewed and commented on by the Steering Committee. Two iterative rounds of comments from the 55 

Steering Committee were collected prior to the November 2020 Consensus Conference with appropriate 56 

manuscript revisions. Based on additional comments from Conference participants and a 30 day public 57 

comment period, the paper was further revised for submission. 58 

 59 

Sclerosis of Skin and Fascia 60 

Current clinical knowledge  61 

Skin is the organ that is most frequently affected by cGVHD.  While inflammatory disease 62 

manifestations characterized by superficial (erythematous or lichen planus-like) clinical presentations 63 

are often responsive to therapy, current management options for fibrotic disease remain limited. 64 
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Early sclerotic cGVHD (ScGVHD) is relatively rare3 but long-standing cGVHD is likely to advance to 65 

sclerosis, with 20% of patients having sclerosis after 3 years of cGVHD therapy with sclerosis prevalence 66 

exceeding 50% among those with severe cGVHD3, 4. ScGVHD can manifest as localized disease (morphea-67 

like), diffuse involvement, deep sclerosis, panniculitis, or fasciitis without additional epidermal 68 

manifestations. ScGVHD may cause joint contractures, vascular insufficiency, skin breakdown, 69 

neuropathy (including small fiber neuropathy, nerve compression syndrome and painful muscle 70 

cramping), myopathy via fascial compression and poor wound healing. 71 

 72 

Pathophysiology:  73 

Fibrosis represents the terminal step of an unchecked inflammatory alloreactivity cascade. The role 74 

of T cells in ScGVHD development is well defined and supported by defined genetic risk factors5, but 75 

their role in an established sclerotic response is unknown. ScGVHD biopsy specimens demonstrate 76 

variable levels of CD4+ and CD8+ T cell infiltration with unknown clonal architecture6-8 9; they may 77 

represent bystanders or effectors depending on biopsy timing6, 7. In systemic sclerosis (SSc)10 as well as 78 

cGVHD11, 12 impaired function of regulatory T cells has been reported, and IL-2 treatment which expands 79 

regulatory T cells showed efficacy in advanced cGVHD13. Humoral immunopathology, such as stimulating 80 

PDGF-receptor antibodies, could have a role in severe fibrotic forms of cGVHD14, however, poor 81 

correlation of cGVHD severity, lack of damage of grafted donor skin, and limited response to PDGF-R 82 

inhibitors in patients with these antibodies argue against the broader relevance of this finding15, 16. A 83 

possible mechanistic B cell role in ScGVHD has been suggested with improvement of sclerosis after B cell 84 

depletion17. Still, definitive evidence linking antibody-dependent mechanisms to human ScGVHD is 85 

lacking.  86 

Recently, distinct dermal myeloid cell populations were identified in human skin18. In animal models, 87 

macrophages contribute to development of fibrosis in both TGFβ-dependent and -independent fashion 88 

and their pathogenic role in cGVHD is increasingly recognized19, 20. Relevant for ScGVHD, myeloid-89 

sourced TGFβ21, 22 promotes fibrosis through positive regulation of fibroblast proliferation and 90 

differentiation into myofibroblasts23 and stimulation of extracellular matrix overproduction24. In 91 

addition, macrophage-derived TGFβ promotes epithelial mesenchymal transition (EMT) in models of 92 

lung fibrosis25. Partial EMT is involved in normal wound healing, though its disruption in the 93 

inflammatory environment can promote pathologic fibrosis in lung and skin26. While fibroblasts 94 

represent critical mediators of fibrotic tissue injury, little is known about their homeostasis during 95 

cGVHD. 96 

TGFβ is a keystone pathway in many fibrotic disorders, and has a documented role in preclinical 97 

ScGVHD21, 22. In patients, higher TGFβ levels are associated with adverse outcomes taking into account 98 

the challenges to correlating expression and activity27, 28. However, TGFβ is temporally restricted and has 99 

pleiotropic roles22 in different compartments and its use of distinct downstream signaling pathways 100 

makes it a challenging therapeutic target. Type I interferon (IFN) responses feature prominently in SSc 101 

skin fibrosis and ScGVHD as well29, 30, tightly linking adaptive and innate immune cross-talk in initiation 102 

and persistence of ScGVHD, with possible therapeutic implications. 103 

Developmental (morphogen) pathways, particularly Hedgehog, Wnt, and Notch, are involved in 104 

fibrotic disorders26, 31, 32. These pathways, commonly influenced by TGFβ and highly crosslinked, often 105 

create a feed-forward loop promoting aberrant tissue remodeling. Active Hedgehog signaling has been 106 
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observed in the skin of patients with ScGVHD and its targeting in preclinical models modulated collagen 107 

production by myofibroblasts and reduced fibrosis33. Hedgehog inhibitors, have been tested in cGVHD 108 

with some efficacy, though hindered by significant toxicities34, 35. Recent data in ScGVHD suggested the 109 

immunomodulatory role of morphogen pathways with broad effects on adaptive immunity promoting 110 

cGVHD34, 36, thus providing an added impetus for clinical translation. The endocannabinoid system is 111 

involved in multiple inflammatory and fibrotic disorders, with opposing role for signaling through 112 

cannabinoid receptor 1 (CB1R; profibrogenic) and cannabinoid receptor 2 (CB2R; antifibrotic/anti-113 

inflammatory) with agents already in clinical trials37,38, 39. 114 

 115 

Gaps in knowledge and unmet need; highest priorities 116 

The pivotal role of immune injury in the initial steps of fibrosis is well-accepted. However, the time 117 

when pathogenesis shifts from active inflammation to feed-forward loops of dysregulated tissue 118 

remodeling remains unknown. Understanding this transition is essential to devise approaches with 119 

optimal therapeutic indices and minimal immunosuppression with all its associated risks. Both skin and 120 

peripheral blood samples should be queried to identify abnormalities along the disease continuum to 121 

inform preclinical modeling with a goal of defining the mechanistic relevance of the findings. Optimized 122 

pre-clinical ex vivo approaches could be well suited for the latter (e.g. to evaluate the effect of TGFβ and 123 

TGFβ pathway inhibitors on sclerotic skin fibroblasts). Deeper interrogation should use -omics methods 124 

and novel tissue diagnosis approaches such as multiplex immunohistochemistry/ immunofluorescence, 125 

which can be enhanced by artificial intelligence (machine and deep learning) to offer a spatial 126 

perspective into the disease process and facilitate the development of novel biomarker signatures. A 127 

clinical challenge is to separate direct immunological effects on skin, fascia, and nerves from indirect 128 

(compression) and other causative factors taking into account, that nerves may also be a potential 129 

target of cGVHD outside skin and fascial involvement (i.e. toxicity of the prior treatment, nutritional and 130 

electrolyte deficits among others)40, 41. 131 

Clinical trials need more robust and sensitive endpoints. It is particularly challenging to precisely 132 

quantify the evolution and the extent of deep-seated (subcutaneous/fascial) disease to assess disease 133 

response and the current organ-based grading system is poorly suited to detect responses in established 134 

sclerosis. Given this limitation, ScGVHD responses could be considered functional improvement (e.g. 135 

improved joint mobility documented by P-ROM and physician global and skin/joint tightening scale per 136 

the 2014 NIH Consensus), even if skin-specific scoring remains unchanged. Data supporting such an 137 

approach already emerged since the 2014 consensus42 and the bedside validation in ScGVHD should be 138 

actively pursued. Imaging biomarkers that have been suggested include high-frequency ultrasound and 139 

magnetic resonance imaging, but rapid, safe, less costly and accessible clinical assessment tools are 140 

needed (Table 1)43, 44. Gene expression biomarkers in SSc skin correlated highly with changes of the 141 

modified Rodnan skin score and have been utilized to support response assessment in several clinical 142 

trials in that disease45-48. 143 

Translation of knowledge accrued from organ fibrosis (e.g. SSc and idiopathic pulmonary fibrosis) to 144 

ScGVHD should be accelerated. Some agents have already demonstrated promise in cGVHD (e.g. 145 

belumosudil, a ROCK2 inhibitor49), while many others remain unexplored (e.g. connective tissue growth 146 

factor (CTGF)- or cannabinoid receptor-directed therapies) (Table 2). Theoretically, avoiding unnecessary 147 

immunosuppression and side effects is possible with topical delivery methods50, but most are 148 
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formulated for effectiveness against superficial skin conditions affecting the epidermis and papillary 149 

dermis and effective topical delivery in ScGVHD may be hampered by increased dermal thickness. 150 

Strategies to improve drug delivery include physical approaches (microneedles, laser, iontophoresis), 151 

particle-based drug carriers (lipid-based, nanoparticles) and chemical approaches (permeation 152 

modifiers, prodrugs)51. Precision medicine with immune effector cell therapies targeting fibrosis have 153 

been explored in other diseases52, and could be considered in ScGVHD. Multi-targeting approaches may 154 

be helpful to prevent evolution to sclerosis and to enhance safety without compromising efficacy53. 155 

 156 

Highest Priorities and Roadmap for progress for ScGVHD 157 

1. Longitudinal multicenter studies to test pathologic cell populations in lesional skin and 158 

peripheral blood, and cytokine and chemokine responses, to identify additional target 159 

pathways. 160 

2. Capitalize on the enhanced resolution of next generation sequencing strategies, including single-161 

cell RNA-, ATAC-, TCR-,  and BCR-seq to query skin biopsies to provide biological insight into the 162 

individual mediators of ScGVHD, address the degree of temporal and clinical disease 163 

heterogeneity, and the origins (recipient versus donor) and phenotype of expanded and/or 164 

clonally expanded T cell and B cell populations. These investigations could be complemented by 165 

new techniques like MIBI-TOF54 combined with non-linear dimensionality reduction analysis 166 

approaches (tSNE/viSNE). 167 

3. Efforts should center on molecular (transcriptional and epigenetic) definition of ScGVHD disease 168 

heterogeneity, where single-cell -omics offer promise of identifying potent prognostic and 169 

predictive biomarkers and therapeutic targets. 170 

4. Analyze differences in mediators and targets (epidermal versus dermal structures, fascia, 171 

nerves) to permit personalized interventions. 172 

5. Test emerging therapies being developed for organ fibrosis and supported by biological insights 173 

in ScGVHD, focusing on early intervention. Promising candidates are listed in Table 2. 174 

Combination therapies targeting multiple pathways active in fibrosis should be considered to 175 

augment efficacy while minimizing toxicities. 176 

6. Develop novel tools for better measurement and documentation of change in skin sclerosis for 177 

clinical trials. Refinements of the current 2014 clinical response criteria are needed for skin 178 

sclerosis/fascia manifestations.  179 

 180 

 181 

PULMONARY INVOLVEMENT 182 

Current clinical knowledge 183 

Bronchiolitis obliterans syndrome (BOS) is the only formally recognized manifestation of lung 184 

cGVHD, with an incidence of 3-10% of allogeneic hematopoietic cell transplant recipients (HCT)55-57,58 , 185 

and 14%58 in those with cGVHD. Although the histologic entity of obliterative bronchiolitis is the 186 

diagnostic lesion of lung GVHD, clinical diagnosis is largely based on pulmonary function studies which 187 

are difficult to perform in children under age 759. Risk factors for onset include antecedent respiratory 188 

viral infections60, 61 and impaired lung function early post-transplant57,62. Worse prognosis is associated 189 

with early onset after transplantation and severe FEV1 impairment at diagnosis. Contemporary series 190 
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show 2-year survival rate of 70% after BOS diagnosis63 but 5-year survival remains low at approximately 191 

50%, highlighting the need for novel prevention and treatment strategies57.  192 

 193 

Pathophysiology 194 

The pathology of BOS is characterized by fibrotic narrowing and obstruction of small airways, likely 195 

the shared outcome of immune and non-immune mediated injury to the airway epithelium. A 196 

fundamental knowledge gap, however, lies in understanding the exact mechanisms by which lung 197 

epithelial cell injury alters immune and fibrotic responses to contribute to obliterative bronchiolitis after 198 

HCT. Mechanisms being explored in other disease contexts include airway stem cell depletion64 and 199 

acquisition of a persistent inflammatory airway epithelial cell phenotype65, 66. The immune dysregulation 200 

associated with BOS after lung allograft or HCT appears to involve oligoclonal expansion of CD4+ T cells, 201 

reduced T regulatory cells, and higher levels of interleukin-17 and interleukin-867. In one murine model, 202 

alternatively activated macrophages drove BOS, supported clinically by evidence of leukotriene 203 

production, and polarized CD4 immune activation19. In another preclinical model, donor B-cells 204 

contribute to airway pathology through local alloantibody production. Disruption of germinal center 205 

formation, which is supported by T follicular helper cells68, reduced pulmonary dysfunction69. These 206 

mechanistic insights have not yet been confirmed in humans although biomarker studies support a 207 

prominent role of B cells with significantly elevated CD21low B cells and high sBAFF levels70. The role of 208 

the microbiome, as suggested in other airway diseases needs to be investigated. 209 

 210 

Physiological subtypes 211 

Defining clinical phenotypes of BOS remains a significant knowledge gap that hampers our ability to 212 

identify patients at risk for morbidity and death from lung GVHD. Current NIH spirometric criteria used 213 

for BOS diagnosis are unlikely to reflect the full spectrum of physiologic and histologic manifestations of 214 

BOS71, 72, 73. A concerning pattern is reduced FEV1 and FVC with normal FEV1/FVC ratio71, likely reflecting 215 

“pseudorestriction” due to small airway obstruction. An open question remains whether lymphocytic 216 

bronchiolitis, which is responsive to anti-inflammatory agents72, represents an early phase of disease or 217 

a distinct subtype of BOS. While some patients demonstrate stability of FEV1 after clinical recognition, 218 

this plateau could be due to treatment, a distinct biology, or the stage of the disease at diagnosis58, 63, 219 

More significantly, the clinical and biological risk factors for persistent refractory lung function decline 220 

are not known. 221 

The association of cGVHD with restrictive lung impairment remains ill-defined for HCT survivors, and 222 

it is not currently recognized as a cGVHD manifestation. Restrictive allograft syndrome (RAS) is a 223 

phenotype of chronic lung allograft dysfunction (CLAD) in lung transplantation recipients, and is defined 224 

by a reduction in forced vital capacity or total lung capacity (TLC) with persistent lung infiltrates and 225 

carries a worse prognosis than classic BOS74,75,76. While a similar entity is suspected to occur after HCT, 226 

confounding diagnoses for restrictive physiology and the lack of validated diagnostic criteria in the 227 

context of cGVHD have been barriers to recognition77. Restriction may be due to known interstitial lung 228 

disease entities including organizing pneumonia or extraparenchymal processes including truncal 229 

sclerosis78, respiratory muscle weakness73, 79, or pleural effusions. Nevertheless, histological studies of 230 

BOS in HCT demonstrate concomitant bronchiolar lesions and interstitial fibrosis73, suggesting that 231 

interstitial abnormalities, in addition to airway pathology, are part of the spectrum of lung cGVHD. Table 232 
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3 depicts the spectrum of lung abnormalities after HCT including diagnostic criteria and association with 233 

cGVHD. 234 

 235 

Treatment 236 

Treatment for BOS is aimed at stabilizing lung function, as there are no established therapies that 237 

reverse the underlying pathologic lesion of BOS. The combination of inhaled corticosteroids 238 

(fluticasone), azithromycin and montelukast (FAM), with or without a long-acting bronchodilator, has 239 

been established as organ-specific therapy for BOS80,81 accompanied by systemic corticosteroids taking 240 

into account a potential impaired graft-versus-leukemia effect associated with azithromycin as reported 241 

in a prophylaxis study82. However, a significant proportion of BOS patients continue to decline despite 242 

these treatments83. Few effective options are available, and intensified immunosuppression contributes 243 

to lung infections, which in turn, worsen lung function. Agents that are under investigation or have 244 

shown utility in other chronic lung conditions including topical immunosuppressants84 and 245 

antiinflammatory and antifibrotic agents currently in use for pulmonary fibrosis85  246 

 247 

Highest priorities and roadmap for progress in pulmonary cGVHD 248 

Our ability to prevent and treat lung manifestations of cGVHD remains hampered by an incomplete 249 

understanding of disease pathogenesis and natural history, owing in part to the relative rarity of BOS. 250 

Research priorities include the following: 251 

1. Pathogenesis. The creation of a shared lung-specific biorepository to support biomarker discovery 252 

and mechanistic studies. Given the inherent challenges of procuring surgical lung tissue, universal 253 

protocols need to be implemented to systematically collect excess bronchoalveolar lavage and lung 254 

biopsy specimens obtained during clinical care. Less invasive means of sampling airway epithelium, 255 

e.g. bronchial brushings, or developing validated serum or plasma based assays should be utilized86. 256 

Coupling these samples with carefully annotated clinical databases will be critical. (Figure 2) 257 

2. Subtypes. A longitudinal multicenter patient cohort followed from the time of cGVHD onset would 258 

allow for the comprehensive clinical phenotyping, classification and epidemiology of lung GVHD 259 

subtypes. Data to be collected include clinical disease history, pulmonary function tests, infections, 260 

chest computed tomography 86, 87), and lung histology. Quantitative lung imaging techniques, i.e., 261 

parametric response mapping, may play an important role in delineating phenotypes. 262 

3. Treatment. Targeted anti-inflammatory agents and antifibrotics are potential therapies and should 263 

be tested before severe BOS forms develop. Treatment trials must be informed by knowledge of 264 

natural progression and an understanding of pathogenesis and biomarkers of response. Clinically 265 

relevant endpoints include FEV1 stability (or lack of progression of FEV1 decline), infectious 266 

exacerbations, exercise tolerance, quality of life, reduction of systemic steroid use, and overall 267 

survival.  268 

 269 

GASTROINTESTINAL INVOLVEMENT 270 

Current clinical knowledge  271 

Historically, the intestine has been less commonly affected by cGVHD. The 2014 NIH organ scoring 272 

of cGVHD does not distinguish between the site of gastrointestinal (GI) involvement (esophagus, upper 273 

GI, and lower GI). However, the NIH 2014 response criteria do distinguish between reported symptoms 274 



8 
 

in these three areas88. Incidence of esophageal, upper GI, and lower GI involvement is, respectively, 275 

16%, 20%, and 13%, according to analysis from the cGVHD Consortium89. Most importantly, intestinal 276 

involvement is associated with greater risk of non-relapse mortality88, 90, 91.  277 

Risks factors for intestinal involvement in cGVHD remain to be elucidated. Ethnicity, genetic 278 

diversity, environmental differences, diet, antibiotic use, supportive care or microbiota or microbe-279 

derived metabolites may all influence GI-cGVHD92-96. Age is a potential risk factor since children appear 280 

particularly susceptible to late GI-acute GVHD (aGVHD) affecting up to 24.7% of pediatric transplant 281 

recipients97 with subsequent GI overlap symptoms at time of cGVHD diagnosis. Loss of microbial 282 

diversity with predominant expansion of specific bacteria persisted for up to 1 year after HCT 283 

independent of onset of cGVHD95. In contrast, a small study showed that increased relative abundance 284 

of butyrogenic bacteria after the onset of aGVHD was associated with subsequent steroid-refractory 285 

aGVHD or cGVHD96 indicating the need for further investigations on the association of dysbiosis, 286 

antibiotic strategies and GI-cGVHD95. 287 

 288 

Pathophysiology 289 

Chronic GVHD is characterized by atrophy/destruction of tissues with subsequent fibrosis. However, 290 

intestinal fibrosis is rare in cGVHD98, 99. Intestinal epithelium is the most rapidly self-renewing tissue in 291 

adults; intestinal epithelial cells are continuously regenerated from intestinal stem cells (ISCs), which are 292 

key to the regeneration of damaged intestinal epithelium100. There are three types of epithelial cells: 293 

squamous, columnar, and cuboidal. It seems that tissues having squamous epithelium such as 294 

esophagus, mouth, and vagina, as well as those having cuboidal epithelium such as sweat glands and 295 

salivary glands are more prone to dysregulated fibrosis in cGVHD than those having columnar epithelium 296 

such as stomach, intestine, and trachea. Animal studies showed that both ISCs and their niche Paneth 297 

cells are targeted in aGVHD, resulting in impaired regeneration of the injured epithelium101-105. The rapid 298 

and potent repair ability of the intestine may protect from early fibrotic processes that often accompany 299 

repair processes in other tissues. Profiling of immune cell populations and plasma markers at day 100 300 

after HCT demonstrates biological differences between cGVHD and late-onset aGVHD106.  301 

 302 

Highest priorities and roadmap for progress in gastrointestinal cGVHD 303 

1. Enforcement of the NIH 2014 terminology (acute versus chronic GVHD with overlap subtype of 304 

cGVHD) within and across studies107-113 since current natural history trials as well as clinical trials 305 

revealed a significant number of wrongly labeled patients97. Electronic tools like the GVHD App may 306 

assist114. The severity of individual GI manifestations should be recorded applying the response 307 

criteria not only at the time of diagnostic onset, but over time and in response to therapeutic 308 

strategies. 309 

2. Generate experimental models able to address the role of dysbiosis, intestinal inflammation and 310 

subsequent cGVHD including other organ manifestations. 311 

3. Collect blood and stool samples in either natural history cohorts or interventional clinical trials to 312 

allow study of human GI-cGVHD which includes metabolome and microbiome analyses including 313 

sufficient sampling and follow up of aGVHD trials. 314 

 315 

 316 
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OCULAR INVOLVEMENT 317 

Current clinical knowledge 318 

Ocular cGVHD (oGVHD) is one of the most frequent, rapidly-progressive organ manifestation with 319 

characteristic inflammatory, immune dysregulatory and fibrotic manifestations 23, 115-117. OGVHD is 320 

usually diagnosed between 5-24 months after HCT118-120, and it can severely impact quality of life and 321 

quality of vision 121, 122 due to severe symptoms such as burning, dryness 88, 123-125, and loss of visual 322 

function 126. Preexisting dry-eye and Meibomian gland disease as a consequence of chemotherapies or 323 

possibly irradiation increases the risk for later oGVHD 127, 128. Early after transplantation, some patients 324 

already have a decrease of tear quantity and quality, yet eye involvement is only recognized once 325 

damage exceeds the eye’s ability to compensate. Most importantly, oGVHD is not another form of dry-326 

eye disease (DED), and approaches and therapies for DED may fail in oGVHD. Table 4 summarizes the 327 

differences between DED and oGVHD. 328 

OGVHD mainly presents as ocular surface disease demonstrating features such as blepharitis, 329 

Meibomian gland disease, qualitative and quantitative alteration of tear film, loss of goblet cells, corneal 330 

and conjunctival epitheliopathy, corneal vascularization and fibrosis of ocular tissues including 331 

conjunctiva and lacrimal glands 118, 129-132. In addition, a few reports have described intraocular 332 

involvement including choroid and retina 133. However, there are currently no specific signs that are 333 

diagnostic for oGVHD, although certain combinations of findings, such as conjunctival subepithelial 334 

scarring and superior bulbar and limbal keratoconjunctivitis are commonly seen 117, 134-136. Without early 335 

diagnosis and appropriate treatment oGVHD progresses towards loss of visual function by complete loss 336 

of aqueous tear production and scarring of the cornea. The impaired epithelial barrier can lead to 337 

complications such as infection, corneal ulceration and melting, and endophthalmitis. High risk corneal 338 

transplants fail frequently under these conditions of presumably increased rejection and impaired tear 339 

production, eventually resulting in loss of the eye 137-140. 340 

The 2013 International Chronic Ocular GVHD Consensus Group (ICOGVHD 2013) Diagnostic Criteria 341 

filled an existing gap by adding recommendations for specific examinations performed by eye care 342 

specialists 124, 141 to previous NIH consensus criteria 142. The 2013 classification facilitates diagnosis of 343 

oGVHD by providing a structured clinical approach for distinguishing definite oGVHD from probable or 344 

“none” categories. However, it is not designed to detect preclinical oGVHD or assess severity, and 345 

furthermore it does not translate into the NIH 0-3 eye score. Other grading systems have been 346 

suggested and validated 143, however are not yet established internationally. 347 

 348 

Pathophysiology  349 

Conditioning chemotherapy, radiation and infection precede the onset of oGVHD and may induce 350 

homing signals for mobilization and migration of circulating bone marrow cells including hematopoietic 351 

stem cells and mesenchymal stromal/stem cells into the microenvironment of the ocular surface and 352 

lacrimal gland. However, it is not understood how innate and adaptive immune mechanisms are 353 

triggered and how these mechanisms initiate oGVHD. Studies show increased levels of ICAM-1, IL-1β, IL-354 

6, IL-8 144 145, neutrophil extracellular traps (NETs)116, extracellular DNA 146, 147 and decreased level of 355 

lactoferrin 148, DNAse 147, IL-7 and EGF 145 in the tear film. In lacrimal glands affected by oGVHD, early 356 

fibrosis and myxedematous tissue may herald a rapidly progressive fibrosis 117 with activated fibroblasts 357 

already infiltrating into the lacrimal gland. Stromal fibroblasts in the lacrimal gland and conjunctiva 358 
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promote the functional interaction between pathogenic T cells and antigen presenting cells (APCs) 359 

including macrophages117, 149. The functional interaction between CD4+ T cells and fibroblasts and 360 

senescent macrophages might result in the proliferation and activation of fibroblasts through cell–cell 361 

contact and T cell–derived soluble fibrogenic factors, such as IL-4, IL-6, and IL-17150, 151. Activated 362 

macrophages and fibroblasts through both classical immunological pathway and sterile inflammatory 363 

pathway including presence of NETs116 and extracellular DNA from the damaged tissue 147, activation of 364 

endoplasmic reticulum stress pathway 152 and tissue renin angiotensin system 153 synthesize an excessive 365 

amount of extracellular matrix, resulting in rapid interstitial inflammation and fibrosis151, 154, 155.  366 

 367 

Information from animal models and clinical analyses 368 

Several animal models have been used to study biology, onset, time course, and therapies for 369 

oGvHD 156-161 149, 156-161. These models showed that T cells infiltrating the cornea and lacrimal glands 370 

derive from donor animals and lead to an oGVHD phenotype 159 161 with subsequent fibrosis. Perez et al 371 

introduced a scoring system for murine models of oGVHD 156. Several preclinical studies tested potential 372 

therapeutics such as siRNA 162, bromodomain inhibitors 163, Rebamipide 164 and VAP-1 165  and a SYK 373 

inhibitor 166. As clinical signs in oGVHD are also present in isolated forms in other ocular disease, e.g. 374 

conjunctival fibrosis in ocular cicatricial pemphigoid (OCP) or chronic allergic keratoconjunctivitis, it may 375 

be necessary to use such models 167, 168 as comparators in experimental studies to distinguish organ-376 

specific cGVHD pathologies from secondary, damage-related disease.  377 

 378 

Gaps, highest priorities and roadmap for progress in oGVHD 379 

Currently, there are no treatments specifically approved for oGVHD. This may be in part because the 380 

natural history of oGVHD is largely unknown and the innate and adaptive immune mechanisms that 381 

trigger and sustain oGVHD are incompletely understood. Furthermore, oGVHD clinical trials are 382 

challenging because of lack of well-defined and specific primary efficacy outcome measures, and small 383 

sample size. Gaps in clinical management include uncertainty whether to refer patients post-HCT ‘as-384 

needed’ for eye care or have ‘pre-scheduled’ frequent follow ups, and whether to start treating oGVHD 385 

with aggressive anti-inflammatory and immunosuppressive topical therapy then taper based on 386 

reduction in signs (step-down treatment) or start treating with lubrication therapy and escalate 387 

treatment based on continued symptoms (step-up treatment).  388 

 389 

Highest priorities and roadmap for progress in ocular cGVHD 390 

1. Establish early diagnostic criteria (clinical signs and/or biomarker) separating oGVHD from other 391 

forms of DED so that appropriate interventions can be promptly instituted. This revision requires a 392 

better understanding of the immunopathology using appropriate animal models for oGVHD that 393 

mimic the human situation as closely as possible. These animal models should also be used to 394 

identify therapeutic targets and for pre-clinical testing of promising drug candidates and studies of 395 

functional connections between organ-systems that are sequentially or simultaneously affected by 396 

cGVHD. 397 

2. Identify biomarkers associated with active oGVHD at the earliest possible time points. As the eye is 398 

easily accessible, tear film or by impression cytology can be tested. Besides cytokines, and genetic 399 
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markers, optical biomarkers may be useful, including optical coherence tomography (OCT) or 400 

confocal microscopy that can be used non-invasively. 401 

3. Develop efficacy outcome measures that can be used in oGVHD-specific clinical trials to assess 402 

response to specific interventions (punctal plugs, corneal lenses). Such measures need to distinguish 403 

ophthalmologist-driven tools from those assessments which can be done in the hematologist-404 

oncologist office. Given the known divergence between signs and symptoms in oGVHD, validated 405 

patient-reported measures may also be appropriate primary endpoints. 406 

4. Conduct eye-targeted studies, for example, (a) punctal occlusion or not; (b) referral as-needed for 407 

eye care vs. pre-scheduled frequent follow ups; (c) step down (start treating aggressively then taper) 408 

vs. step up (escalate treatment based on response).  409 

5. Evaluate systemic treatment options with regard to efficacy in oGVHD. Currently oGVHD is treated 410 

with topical interventions independently of other organ manifestations despite obvious similarities 411 

in the pathophysiology. A systematic analysis of ocular effects of systemic immunosuppression is 412 

needed. 413 

 414 

Other morbid conditions 415 

Other conditions which are either part of NIH-defined cGVHD or occur in association with cGVHD 416 

require further research efforts. These include genital involvement which is significantly more common 417 

than reported in large registries due to the lack of routine screening169, oral manifestations which impair 418 

QoL and may increase the risk for secondary malignancies170, isolated fasciitis171, and wasting syndrome 419 

not explained by GI manifestations. Although these are NIH consensus-defined conditions, limited 420 

understanding of organ-specific pathophysiology prevents the development of targeted treatment 421 

approaches. Moreover, associated syndromes seen with cGVHD172, like polyserositis which is infrequent 422 

but difficult to treat173, immune mediated cytopenias and renal complications (glomerulonephritis, 423 

nephrotic syndrome) require more study. All have in common the lack of knowledge of the incidence, 424 

their specific pathophysiology and relationship in the context of cGVHD. 425 

In addition, other potential organs may also be targeted by cGVHD but the exact relationship has 426 

not been established. For example, central nervous system dysfunction is reported by a significant 427 

percentage of long-term survivors mainly as cognitive dysfunction174. It remains to be established 428 

whether cognitive dysfunction is caused by cumulative neurotoxicity and acute GVHD, as demonstrated 429 

in experimental models and clinical investigations, 175, 176, 177 or whether cGVHD further contributes. Rare 430 

cases of cGVHD with acute disseminated encephalomyelitis (ADEM) have been reported 178, 179. Similarly, 431 

peripheral nervous system dysfunction is prevalent in a high proportion of cGVHD patients 40, 41, 180 but 432 

the relationship to alloimmunity has not been established. Autonomic nervous system dysfunction with 433 

dry mouth or eyes, dry skin, obstipation, diarrhea, and sweating disturbances are of interest due to 434 

overlap with symptoms of cGVHD. For example, impaired sensitivity of the ocular surface has been 435 

reported after HCT181. Endothelial dysfunction could be part of the pathophysiology of cGVHD in a 436 

variety of organs based on experimental 182, 183 184 and clinically evidence 185, 186. It may contribute to long 437 

term cardiovascular morbidity and mortality187, 188 and additional study is warranted. 438 

 439 

 440 

 441 
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Study design considerations  442 

Due to the rare incidence and prevalence of the highly morbid conditions, feasibility is a concern, and 443 

novel approaches to clinical investigation are needed 189-192. Careful selection of endpoints that can 444 

demonstrate benefit with a reasonable number of patients is critical since underpowered studies do not 445 

advance the field. Studies need to be designed with attention to sample size, statistical power, and 446 

control of bias. A detailed discussion of innovative trial designs is beyond the scope of this paper but the 447 

following recommendations are offered: 448 

1. Careful consideration of eligibility criteria utilizing enrichment strategies 193 may identify a smaller 449 

but more informative study population where a drug effect can be observed 194. 450 

2. Some established cGVHD manifestations may be permanent and a worthy goal could be “stable 451 

disease/improved trajectory” or functional or symptom improvement instead of partial or complete 452 

remission. These endpoints require acceptance that lack of worsening and/or improved patient 453 

functioning/patient-reported outcomes are meaningful clinical benefits even if cGVHD organ 454 

function does not improve. Lack of worsening can be documented in comparison to concurrent or 455 

historical controls 195or the patient’s prior trajectory. 456 

3. While a non-randomized single arm study, without concurrent controls, may seem attractive, this 457 

design is necessarily less precise, and outcomes less definitive. Alternatives to consider include use 458 

of historical controls or utilizing each patient as their own control. Single case experimental design 459 

(SCED) or N-of-1 trials may be the most feasible option for the very rare highly morbid forms of 460 

cGVHD. In such trials, each individual participant serves as their own control, and may receive 461 

multiple interventions in a crossover fashion. Multiple N-of-1 studies may then be combined in a 462 

meta-analysis.  463 

4. Efficiency of study design should be optimized. The more complex designs are adaptive196-198, with 464 

the design being modified according to pre-specified rules during the conduct of the study to 465 

increase efficiency. For example, a Bayesian approach199 is a statistical inference framework for 466 

leveraging existing data from different sources, synthesizing evidence of different types, including 467 

retrospective data, and information gained during the conduct of the study. In particular, the data 468 

deficits of “small” clinical trials can be mitigated by incorporating past information. The combination 469 

of observed data and prior opinion is governed by Bayes’ theorem and can result in smaller sample 470 

sizes needed to reach conclusions. The major criticism of the Bayesian approach is subjectivity. 471 

5. Optimize data analysis strategies, for example, continuous outcomes are more efficient when the 472 

sample size is small; consider longer studies; and use covariate adjustment, such as statistical 473 

stratification.  Consider if the distribution is likely to be parametric (modeled by a probability 474 

distribution that has a fixed set of parameters) or non-parametric when designing the analysis plan. 475 

6. When multiple agents are available, consider efficient study designs to rank the agents and 476 

eliminate less effective ones through futility or selection designs. 477 

 478 

CONCLUSIONS 479 

While cGVHD treatment in the past was applied in a one fits all fashion and initiated after moderate 480 

symptoms started, this approach does not recognize that some manifestations disproportionately cause 481 

morbidity and mortality. Prevention of the highly morbid manifestations has emerged as one of the 482 
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most important goals for the next few years. During the next 3 years, identification of new diagnostic 483 

tools including biomarkers of all types and clinical risk factors will be crucial to prevent highly morbid 484 

complications. In the next 3-7 years, a better understanding of local tissue pathophysiology will lead to 485 

therapeutic targets. Eventually, organ-specific therapeutic clinical studies will be necessary and choice of 486 

endpoints and careful study design, recognizing the small eligible population, can increase the chance of 487 

a successful trials.  488 

  489 
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 1511 

Table 1: Potential objective assessment tools to assess skin sclerosis (ScGVHD) in chronic GVHD 1512 

Modality Advantages Disadvantages Use in 
ScGVHD 

High-frequency 
ultrasound, acoustic 
radiation force impulse 
(ARFI), shear wave 
elasticity imaging (SWEI), 
ultrasound surface wave 
elastography (USWE) 

Bedside use, easy to assess multiple 
sites, allows rapid comparability to 
previous images 

Cost, requires training, requires 
marking of target area for repeat 
assessment; edema from active 
inflammation may confound imaging 

CS200 
CS43 
CS201 
CS202 

Durometer Bedside use, affordable, small, hand-
held device, easy to use, provides 
numerical readout 

‘Anvil effect’ from underlying bony 
structures, less sensitive for deep-
seated disease; reproducibility 
requires careful experimental 
technique 

CS203 
 

Magnetic resonance 
imaging (MRI), 
MRI/Positron emission 
tomography (PET) 

Detection of deep-seated, sub-clinical 
involvement; useful for detecting 
active fascial inflammation; does not 
require marking of target area 

Cost, inconvenient for patients, 
unclear if responsive to small 
improvements in fibrosis 

CS44 
CS204 
CS205 

Optical coherence 
tomography/elastography 

High-resolution imaging, including 
capability to assess local blood flow  

Limited depth of penetration CR206 

Laser doppler flowmetry 2D flow map of skin perfusion; can 
assess dynamic changes; monitoring 
potential for compromised acral sites 
of ScGVHD 

Affected by ambient temperature; 
movement, pressure or other contact 
with skin will influence perfusion 

CR207 

Suction probe 
(Cutometer®, 
Dermaflex®, Nimble) 

Devices measure stiffness and 
elasticity; have been used in clinical 
assessment of morphea and systemic 
sclerosis 

Affected by many variables, including 
sun damage, water balance, age, body 
location; does not capture changes in 
subcutaneous fat/fascia; remission 
may not result in return of elasticity 

CS200 

Myoton® Hand-held device, detects changes in 
tissue oscillation (skin stiffness and 
other properties) after a mechanical 
impulse 

Requires adherence to measurement 
protocols and knowledge of muscular 
anatomy. Results depend on 
underlying muscle tone, patient 
positioning  

CS208 
CS209 
CS203 
 

CR: case report, CS: case series 1513 

 1514 

  1515 
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Table 2: Candidate therapeutic agents in ScGVHD. 1516 

Target Drug(s) Target cellular 
subsets 

Clinical Development Status References 

CTGF/CTN2 Pamrevlumab 
(FG-3019) 

Fibroblasts Ph-3- IPF (NCT01890265) 210, 211 

Autotaxin Ziritaxestat 
(GLPG-1690) 

Fibroblasts Ph-3- IPF (NCT03733444, 
NCT03711162) 

212 

HSP47 ND-L02-s0201 Fibroblasts Ph-2- IPF (NCT03538301) 50, 213, 214 

Pentraxin 2 
(agonist) 

PRM-151 Fibroblasts 
Macrophages 

Ph-2- IPF (NCT02550873) 
Ph-2- Myelofibrosis 
(NCT01981850) 

215, 216 

CB2R 
(agonist) 

Lenabasum 
(Ajulemic acid) 

Fibroblasts 
T cells 
Macrophages 

Ph-3- Systemic Sclerosis 
(NCT03398837) 
 

217 

CB2R /PPAR 
(Dual 
Agonist) 

EHP-101 Fibroblasts 
Endothelial cells 
Macrophages 

Ph-2- Systemic Sclerosis 
(NCT04166552) 
 

218 

CB1R /iNOS 
(dual 
antagonist) 

MRI-1867 Fibroblasts 
T cells 
Macrophages 

Ph-1  38, 219, 220 

Oncostatin M 
(antagonist) 

GSK2330811 Fibroblasts 
Endothelial cells 
T cells 
Macrophages 
 

Ph-2- Systemic Sclerosis 
(NCT03041025) 
 

221, 222 

TGFβ AVID200 Fibroblasts 
T cells 
Macrophages 

Ph-1- Myelofibrosis 
(NCT03895112) 
Ph-1- Systemic Sclerosis 
(NCT03831438) 

223 

IL-6R Tocilizumab Fibroblasts 
T cells 
Macrophages 

Ph-3- Systemic Sclerosis 
(NCT02453256) 
Ph-2- Steroid dependent 
immune related adverse events 
(NCT04375228) 

224-226 

CSF-1R Axatilimab 
(SNDX-6352) 

Macrophages Ph-2- cGVHD (NCT03604692) 
 

19 

ROCK2 Belumosudil 
(KD025) 

T cells 
Macrophages 
 

Ph-2- cGVHD (NCT03640481, 
NCT02841995) 
Ph-2- Systemic Sclerosis 
(NCT03919799) 

227 

Interferon 
receptor type 
1 

Anifrolumab T cells 
Macrophages 

Ph-3- Systemic Lupus 
Erythematosus (NCT02446899) 
Ph-2- Rheumatoid Arthritis 
(NCT03435601) 

228 

  1517 
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Table 3: Pulmonary syndromes following allogeneic hematopoietic cell transplantation 1518 
 1519 

Entity Established in 
definition of 
lung GVHD 

PFT pattern High Resolution Chest 
CT Findings 

Lung Histology Comment  

Bronchiolitis 
obliterans 
Syndrome 

Yes Fixed obstructive 
pattern: FEV1 decline 
>10%, FEV1/VC < 
LLN.  Elevated 
residual volume or 
Residual 
volume/Total Lung 
Capacity. FEV1/FVC > 
LLN and preserved 
TLC may be seen.  
DLCO may be normal 
or reduced. 

Signs of airtrapping 
(mosaic attenuation 
on expiratory phase) 
or bronchiolitis 
(centrilobular ground 
glass opacities or 
micronodules) and/or 
late sequalae (traction 
bronchiectasis, 
bronchial wall 
thickening) 

Obliterative 
bronchiolitis (OB): 
partial or complete 
fibroproliferative 
occlusion of 
terminal small 
bronchioles, 
lymphocytic 
bronchiolitis may 
also be seen 

There are subtypes of 
BOS based on timeframe 
after HCT, initial tempo 
of onset, FEV1 decline, 
histology, response to 
therapy, and prognosis.  

Restrictive impairment due to Interstitial Lung Disease (ILD) Entities: Multiple entities, as per the ATS/ERS classification of ILD may 
occur after HCT, beyond what is listed here.73, 229  If restrictive impairment  is seen on PFT (ie reduced FVC with preserved FEV1/FVC 
and reduced TLC), high resolution chest CT should be performed to evaluate for ILD and other entities.  

Organizing 
pneumonia230 

No, however 
there is 
evidence for 
association 
with aGVHD 
and cGVHD. 

Restrictive 
impairment 
with  reduced TLC 
with FEV1/FVC > LLN 
most common. 
Obstructive or mixed 
pattern may be seen. 
Reduced DLCO. 

Patchy and 
peribronchilar or 
consolidation, and 
reticular ground glass 
opacities, often 
predominant in upper 
lobes and periphery 

Bronchiolar and 
alveolar 
granulation tissue 

Bronchoscopy should be 
performed to rule out 
infection. Clinical 
diagnosis often made 
without lung histology 
and is empirically based 
on steroid-
responsiveness 

Non-specific 
interstitial 
pneumonia229 

No Reduced TLC and 
DLCO  

Confluent bilateral 
lower lobe ground 
glass opacities, 
bronchiectasis and 
lower lobe volumes 
loss, classically sparing 
the subpleural area 

Diffuse alveolar 
wall thickening by 
uniform fibrosis; 
interstitial 
inflammation 

Bronchoscopy should be 
performed to rule out 
infection 

Pleuroparenc
hymal 
pulmonary 
fibroelastosis2

29, 231 

No Reduced TLC and 
DLCO, occasionally 
obstructive and 
restrictive pattern. 
Progressive and 
severe impairment 
over time 

Upper lobe fibrosis 
with subpleural and 
pleural thickening, 
loss of lung volume, 
and lower lobe 
traction 
bronchiectasis 

Subpleural and 
pleural fibroelastic 
proliferation with 
minimal 
inflammation 

Diagnosis is usually 
made by typical chest CT 
findings 

Restrictive Impairment not Attributed to ILD: These entities are secondary to extrathoracic consequences of cGVHD   
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Truncal 
sclerosis 

No. Sclerosis 
due to cGVHD 
is an indirect 
cause of 
ventilatory 
impairment 

Reduced TLC; RV/TLC 
may be elevated but 
usually does not 
necessarily indicate 
small airways disease 

No parenchymal 
infiltrates. Parametric 
response mapping 
shows low inspiratory 
volumes. 

N/A.   

Respiratory 
muscle 
weakness 

No. This may 
be the 
consequence 
of cGVHD-
related 
myositis or 
prolonged 
steroid use to 
treat cGVHD. 

Concomitant 
reduction in FVC and 
FEV1, reduced TLC 
with relative sparing 
of RV. Reduced 
supine FVC. Maximal 
inspiratory and 
expiratory pressures 
may be reduced. 

Low lung volumes, 
normal parenchyma. If 
diaphragmatic 
weakness or paralysis 
is suspected, a 
fluorographic sniff test 
may show reduced 
diaphragmatic 
excursion 

N/A. Evidence of 
myositis in a 
peripheral muscle. 

Diagnosis of exclusion 

*Restrictive allograft syndrome (RAS) has been defined for lung transplantation (LT)77 as a manifestation 1520 

of chronic allograft dysfunction. BOS is the obstructive form of CLAD in lung transplantation. RAS after 1521 

LT is defined by restrictive physiology and persistent pulmonary infiltrates that represent heterogeneous 1522 

histology. A similar syndrome of restrictive impairment as a manifestation of alloimmunity in the context 1523 

of cGVHD may also exist, however the epidemiologic associations and definitions remain to be 1524 

determined. It is possible that ILD entities that occur in the context of cGVHD could be considered as an 1525 

“RAS-like” condition, or “restrictive alloimmune syndrome” after HCT.  1526 

 1527 

 1528 

 1529 

 1530 

 1531 

 1532 

  1533 
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Table 4: Differences between ocular chronic graft-vs.-host disease (oGVHD) and dry eye disease  1534 

 

 Dry-eye disease 
(DED) 

Ocular GVHD (oGVHD) Clinical trial 
endpoint 
consideration in 
oGVHD 

Cause 

Known 
immunological 
mechanisms 

Autoimmune Th17, 
CD4+/CD8+ T-cell 
activation through 
extrinsic or intrinsic 
triggers, unknown 
antigen 

Migration and activation 
of donor hematopoietic 
/mesenchymal stem cells 

Inclusion of 
participants 
before onset of 
disease possible 

Meibomian gland 
dysfunction (MGD) 

Caused by 
numerous factors 
(aging, rosacea, 
drugs) leading to 
evaporation caused 
by MGD 

Caused by chemotherapy 
and oGVHD, leading to 
evaporation 

MGD as 
secondary 
endpoint 

Fibrosis Not typical for dry-
eye disease (see 
below) 

Early activation of 
fibroblasts and 
macrophages 

Fibrosis as clinical 
endpoint feasible 

Other causes Numerous: 
systemic drugs, 
contact lens wear, 
aging, etc.  

Presumed: 
chemotherapy and/or 
conditioning procedures 

Pre-treatments 
and underlying 
oncological 
disease, origin of 
donor cells, 
might need to be 
considered 
during 
stratification 

Time course 

 Onset mostly 
unknown, slow 
progress in a 
majority of cases, 
over years to 
decades 

Fast onset after HCT, 
progresses within weeks 
to months 

 

Preventive 
clinical trials vs. 
therapeutic 
clinical trials 
feasible 

Impact on visual 
function 

 Mild to severe 
impact, blinding 
disease very rare 

Mostly severe, if 
untreated, often blinding 
disease 

Primary endpoint 

Clinical findings 
(selection of 
typical findings) 

Tear production Reduced in 
aqueous deficient 
DED and in overlap 
(mostly slow onset) 

Reduced (fast onset, 
rapid progression) 

Secondary 
endpoint 

Blepharitis Mostly mild/ 
moderate 

Mostly severe Secondary 
endpoint 

Meibomian gland 
dysfunction 

Up to 80% in DED Up to 100% in oGVHD Unsuitable 
endpoint, as 
currently unclear 
mechanism 
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Abbreviations: DED, dry eye disease; oGVHD, ocular chronic graft-vs.-host disease; MGD, meibomium 1535 

gland dysfunction; HCT, hematopoietic cell transplantation  1536 

Corneal and 
conjunctival 
intravital staining 

Mild to severe Mostly severe Due to higher 
severity different 
grading systems 
needed to allow 
measuring 
treatment 
success using 
staining as 
endpoint 

Conjunctival 
redness 

Mild to severe Mostly severe Secondary 
endpoint, 
detection and 
grading systems 
need to be 
validated 

Fibrosis Rare finding, 
associated with 
severe rosacea, 
atopic 
keratoconjunctivitis 
or ocular cicatricial 
pemphigoid 

Frequent finding  Primary or 
secondary 
endpoint, 
detection and 
grading systems 
need to be 
validated 

Filamentary 
keratitis 

Rare finding, only 
in severe cases, 
mostly Sjögren 
Syndrome 

Common finding, 
presumably related to 
activation of innate 
immune system 

Primary or 
secondary 
endpoint 

Superior bulbar 
and limbal 
keratokonjunctivitis 

Rare finding, own 
entity not typically 
related to DED 

Frequent finding Secondary clinical 
endpoint 

Intraocular 
involvement 

Not related to DED  Intraocular involvement 
reported  

Secondary 
endpoint in 
subgroup analysis 
possible 

Correlation 
between signs and 
symptoms 

Low correlation: 
strong symptoms, 
weak clinical signs 

Low correlation: weak 
symptoms, strong clinical 
signs 

Development of 
suitable 
symptom 
questionnaires 
for oGVHD 
necessary 
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Figure:  Potential Longitudinal Trial Design Proposal for Highly Morbid Manifestations of 1537 

Chronic GVHD. The proposed study approach aims to simultaneously address identified 1538 

fundamental knowledge gaps in several domains, including 1) description of natural history and 1539 

clinical phenotypes, 2) early detection and predictive biomarker discovery, 3) mechanisms of 1540 

disease through translational work, and 4) evaluation of novel treatments. High-risk patients 1541 

are enrolled at a pre-diagnosis phase based on biomarker or/and clinical risk factors and 1542 

followed over time through phases of cGVHD. Patients may also enter the longitudinal cohort at 1543 

the time of cGVHD diagnosis, and if they develop a highly morbid manifestation, they are 1544 

followed in that specific cohort category and may be enrolled on clinical trials. Longitudinal 1545 

clinical data and serial tissue samples/specimens will be collected. In this Figure, lung disease is 1546 

used as an example for the enrollment entry, interventions, endpoints, and data/samples to be 1547 

collected. This schema can be easily expanded to reflect skin, GI, ocular, and other 1548 

manifestations with relevant data collection and treatment agents. 1549 

 1550 

 1551 

 1552 

Abbreviations: HCT, hematopoietic cell transplantation; cGVHD, chronic graft-vs.-host disease; BOS, 1553 

bronchiolitis obliterans syndrome; SOC, standard of care; f/u, follow-up; FEV1, forced expiratory 1554 

volume-first second; aGVHD, acute GVHD; HRCT, high resolution chest tomography; PFTs, pulmonary 1555 

function tests, BAL, bronchoalveolar lavage; 6MWT, 6 minute walk test 1556 


